
Article Title | Article Author

2222

ISSA The Global Voice of Information Security

Your Browser Wears No Clothes
Why Fully Patched Browsers Remain Vulnerable

By Michael Sutton

Shifts in technology and attack patterns are changing the rules such that it is now common

for fully secured machines to become compromised.

As users of technology, we have been taught that the
Internet is not always a safe place but that we can
protect ourselves by patching and hardening our sys-

tems. While patch management and system hardening have
long been the basics for enterprise security, shifts in technol-
ogy and attack patterns are changing the rules. Today, it is
not just possible, but common for a user with a fully secured
machine to become compromised. At times, this occurs due
to increasingly sophisticated social engineering attacks or
newly discovered (so called zero-day) vulnerabilities. How-
ever, it is increasingly resulting from exploitation, which does
not target a specific vulnerability on an individual platform,
but instead is abusing the functionality and structure of the
Internet itself. This fundamental shift to “naked browser at-
tacks” changes everything. Just as attackers have continually
adjusted their tactics, enterprises must adapt their approach
to security if they wish to stay a step ahead in the never-end-
ing arms race of Web security.

We are now firmly entrenched in the era of Web applications.
It is no longer desirable but expected that the majority of
enterprise development be architected as Web applications,
whether they are to be used internally or externally. This shift
has brought a degree of uniformity to the IT landscape. No
matter what operating system you choose and regardless of
the hardware that you select – mobile or otherwise – it will
have a Web browser and that browser will adhere to at least
a basic set of standards. By 2009, a JavaScript engine has be-
come the norm on even mobile phone browsers and the ma-
jority of platforms can handle at least the most popular Rich
Internet Application technologies such as Adobe Flash. This
subtle and voluntary standardization has not only made pos-
sible Web 2.0 technologies such as AJAX but also created a
broad attack base for those looking to do harm. If attacks can
be leveraged that abuse JavaScript, for example, as opposed to
a specific version of Internet Explorer, the potential popula-
tion for attack has then risen from X% of Internet users to
virtually 100%.

Attackers once viewed browsers as targets for attack. Now,
browsers are becoming facilitators of attacks. Browsers are
simply a door which permits access to the data that the at-
tacker is after. The difference here is that a vulnerability does
not have to be identified and exploited on the browser itself.
Today, many attacks work cross-browser and cross-platform
because they do not target the browser; they target function-
ality that is the same regardless of the browser platform. The
Web was designed to be open – not secure. This fact was not
lost on attackers and they are spending much of their time
bending the rules of the Web to work in their favor. This has
led to a surge in attacks which succeed against fully patched
machines. We deem such attacks to be naked browser attacks
as no patch to protect end users is forthcoming. In this new
world order, we must revisit our approach to Web security if
we are to fight back.

History
The attack cycle used to be simple – attackers would uncover
a vulnerability within an application or operating system, ex-
ploit it, and continue to do so until the appropriate vendor
released a patch to address the problem. This is, of course, an
over simplification of the multitude of variables that could be
involved in any specific case, but it does capture the basis of
what has driven much of the security industry for some time.
One encouraging evolution has been the shrinking window
of time during which an attacker could take advantage of a
given vulnerability. A decade ago it was not uncommon for
enterprises to spend weeks or even months conducting re-
gression testing before gaining the comfort necessary to ap-
ply vendor patches. This allowed for a substantial period of
time during which public knowledge of a vulnerability was
available and millions of machines remained open to attack.
Fortunately, as enterprises have better understood the risks
of exposure and vendors have improved processes for dis-
seminating patches and communicating the risks associated
with individual cases, the window of opportunity for attack

ISSA Journal | February 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

23

has now shrunk to days and even hours following the release
of public knowledge for a given vulnerability.

Figure 1 illustrates three distinct eras that have emerged for
attackers over the past decade. Up until approximately 2004,
many attacks focused on vulnerable Internet-facing ser-
vices such as popular Web, mail and FTP servers. Over
time, critical vulnerabilities in such services were ex-
ploited by attackers, which resulted in fast spreading
worms. We then moved from server attacks to
browser attacks. As servers became increas-
ingly locked down, attackers shifted their
focus to vulnerabilities in Web browsers.
A plethora of vulnerabilities in all brows-
ers led to attacks on end users. While such
attacks generally required a social engineering component to
convince a user to view a page or click on a link, these chal-
lenges were typically minimal. Today, we are entering an era
of naked browser attacks in which there is no specific vulner-
ability in the browser itself, yet the attacks target end users.

Naked browser attacks
Naked browser attacks against secured browsers succeed ei-
ther because they abuse trust established between the brows-
er and a vulnerable Web application or simply because they
abuse functionality of the Web itself, using it in an unintend-
ed manner. A variety of attacks fall into these categories, and
it will not be possible to go into detail on all of them. We will
instead introduce the concept by discussing cross-site script-
ing (XSS), which abuses browser/server trust, and clickjack-
ing, which leverages intended functionality in an unintended
way.

Cross-site scripting
XSS remains one of the most prevalent attacks that we face on
the Web today despite having had a relatively high profile over
the past several years. It has been a fixture in the OWASP Top
Ten1 list of common Web application vulnerabilities since the
list was introduced in 2004. Additionally, the December 2008
WhiteHat Website Security Statistics Report2 indicated that
67% of websites are likely to have XSS flaws. This is a truly
frightening statistic that leaves Web users at risk each and ev-
ery time they browse the Internet.

1 http://www.owasp.org/index.php/OWASP_Top_Ten_Project.

2 http://www.whitehatsec.com/home/resource/stats.html.

XSS illustrates one of the fundamen-
tal changes in security brought about
by the interconnected nature of the
Web. With XSS, the vulnerability
which is abused resides not within a
user’s browser, but instead in a third-
party Web application which the user
accesses. Despite this fact, the user is
the victim of the attack due to the fact

that his browser responds to injected JavaScript as it should,
by interpreting the code. In this attack, the browser has no
way of distinguishing between user-supplied content which
the user intended to include in a request and content which
may have been injected through an XSS attack.

Figure 2 - Typical XSS Attack Scenario

Typical attack
Figure 2 details a typical XSS attack scenario. The follow-
ing walk-thru details why XSS succeeds without requiring a
browser vulnerability.

Generate traffic – XSS requires that a user send a specially
crafted request to a vulnerable Web server. The request
contains embedded active content (usually JavaScript),
which is designed to perform an action of the attacker’s
choosing. Often the script will attempt to send the user’s
cookie contents for the targeted website to the attacker.
Sending spam email is a common way to get victims to
send the predefined request. Typically, the link is embed-
ded within an HTML formatted email message, which in-
cludes a message to entice the victim to click on the link.

Active script sent in request – Should the user click on
the link in the spam email message, he will be sending
a request to the vulnerable Web server. However, rather
than just a simple request for the URL of a Web page, the
request will also include the injected JavaScript, either as
parameters in the URL itself (GET request) or within the
body of the request (POST request).

Active script embedded in response – The vulnerable
Web page includes functionality which will accept user
supplied input and include it in the dynamically generated
page returned to the user. Such behavior is fine, so long
as user supplied input is appropriately sanitized to ensure
that the content received was the content expected. The
absence of such controls is what permits XSS attacks. For
example, we could assume that the page allowed a user to

1.

2.

3.

Your Browser Wears No Clothes | Michael Sutton

Vulnerable Website

Attacker

Victim1. Generate traffic
2. Active script sent

in request

3. Active script
embedded in response

4. Active script
executes

(e.g., cookie theft)

Spam

Sadmind
worm

Code Red
Worm

SQL
Slammer

worm

Blaster
worm

JPEG
GDI+

Vulnerabilties

Month of
Browser

Bugs

Orkut
worm

Clickjacking
debutes

Vulnerable services on
common Internet servers

(web, mail, FTP, etc.)

Vulnerable functionality
(content parsing, URI

handling, etc.)

Abuse of functionality
and Web application

vulnerabilities

Server Attacks Browser Attacks Naked Attacks

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 1 - Evolution of Attacks

ISSA Journal | February 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

24

http://www.theFakeSite.com

Photo Album Maker

Join millions of other happy photo album makers
creating personal records of favorite events
and places. Easy to make coffee table books keep
your memories close at hand.

Satisfaction guaranteed!

Tested Spyware Free

Easily organize your favorite photos
and print out a complete album!

GO FREE Download

FREE

Embedded Content – The targeted action (e.g., password
reset), which is on a page not controlled by the attacker,
is embedded within a page controlled by the attacker.
This is typically accomplished by using an IFRAME on
the attacker-controlled page. This is why “frame busting”
code, which prevents content from being displayed in an
IFRAME, is commonly recommended as a server-side de-
fense against Clickjacking.

Obfuscation – The third-party content, including the
password reset button, despite being on the page will not
be visible as it has its opacity value set to zero. Opacity is
used to adjust the transparency of an object.

Layering – Attacker-controlled content is actually layered
below the third-party content and absolutely positioned to
ensure that the two buttons lineup. However, the Go but-
ton for downloading software is visible instead of the OK
button for the password reset due to the opacity settings
(see Obfuscation). Layering is accomplished by leveraging
z-index properties, which set the depth value of webpage
elements. In this case, the third party content would have

1.

2.

3.

input his name so that the resulting page displayed a “hel-
lo [name]” message. While a string was expected, without
proper sanitization, that same input vector could be used
to inject malicious JavaScript.

Active script executes – When the browser receives the
response, the page content will include the injected mali-
cious JavaScript, which will be interpreted and executed
by the browser.

Impact
While this simple attack scenario involves a single attacker
and victim, XSS is commonly used in more complex attack
scenarios. In January 2008, it was revealed that attackers
had used an XSS vulnerability on the login page of Banca Fi-
deuram, an Italian bank to inject a fake login form within
an IFRAME.� The attack would send a user’s authentication
credentials to an attacker-controlled server and was a par-
ticularly dangerous attack as it was hosted on a trusted, SSL-
protected webpage. XSS attacks are quickly evolving and are
no longer static in nature. XSS worms have now started to
appear on popular social networking sites such as Orkut4 and
MySpace.�

It is important to remember that XSS attacks will succeed re-
gardless of whether or not users have applied all outstanding
security patches. XSS succeeds because browsers are designed
to interpret JavaScript. With XSS, the attacker is abusing an
input validation vulnerability on a Web application, yet the
user viewing the page becomes the victim. In addition to this,
the old adage that users need to surf only “reputable” pages to
remain safe, simply does not apply. Virtually all major web-
sites have experienced XSS vulnerabilities, and given the so-
cial engineering component of an XSS attack, sites with high
volumes of traffic, tend to be included in the most successful
attacks.

Clickjacking
Clickjacking leapt into the media spotlight this past summer
when researchers were asked by Adobe to pull a talk on the
subject just days before it was to be delivered. This attack lay-
ers good content over bad, sprinkled with a little social engi-
neering in order to trick a user into performing an action that
he did not intend to execute.

In Figure � we can see an administrative interface permit-
ting a password reset being layered together with a fake site,
which obfuscates everything. The content of the fake page is
designed to hide what is really going on and convince an un-
suspecting user to, in this case, reset his password, not down-
load free software.

Clickjacking requires the following three components:

� http://news.netcraft.com/archives/2008/01/08/italian_banks_xss_opportunity_
seized_by_fraudsters.html.

4 http://www.washingtonpost .com/wp-dyn/content/ar t icle/2007/12/19/
AR2007121900781_pf.html.

� http://en.wikipedia.org/wiki/Samy_(XSS).

4.

Your Browser Wears No Clothes | Michael Sutton

http://www.theTargetedSite.com

Update User Profile

Change billing address
Change contact email
Change user preferences

Perform other updates:

Change

RESET

Reset password

Reset password

http://www.theFakeSite.com

Photo Album Maker

Join millions of other happy photo album makers
creating personal records of favorite events
and places. Easy to make coffee table books keep
your memories close at hand.

Satisfaction guaranteed!

Tested Spyware Free

Easily organize your favorite photos
and print out a complete album!

GO FREE Download

FREE

http://www.theTargetedSite.com

Update User Profile

Change billing address
Change contact email
Change user preferences

Perform other updates:

Change

RESET

Reset password

Reset password

http://www.theFakeSite.com

Photo Album Maker

Join millions of other happy photo album makers
creating personal records of favorite events
and places. Easy to make coffee table books keep
your memories close at hand.

Satisfaction guaranteed!

Tested Spyware Free

Easily organize your favorite photos
and print out a complete album!

GO FREE Download

FREE

http://www.theTargetedSite.com

Update User Profile

Change billing address
Change contact email
Change user preferences

Perform other updates:

Change

RESET

Reset password

Reset password

1. Embedded content: fake content (left) matches target (right)
reset password layout, aligning the Go and Reset buttons.

2. Obfuscation: target opacity set to zero. (25% opacity here for
demonstration purpose.)

Figure 3 – Clickjacking

3. Layering: target content
exactly positioned with fake
content. Target z-index property
set to place it above the fake
content. Opacity of target set
to zero, making target content
invisible while keeping Reset
button active. (15% opacity for
demonstration.)

ISSA Journal | February 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

25

a higher z-index value than the attacker controlled content.
This way, although the victim sees the Go button, he is actu-
ally clicking the OK button.

Impact
Clickjacking is an enabler for social engineering attacks. As
with XSS, a user will not fall victim simply by viewing a mali-
cious webpage. Instead, he must click on a link to trigger the
attack. By combining a variety of legitimate HTML format-
ting techniques, clickjacking facilitates the necessary social
engineering by making it appear to the end user that he is
clicking on a link other than that which the browser interacts
with. Once an attacker can influence the mouse clicks made by
a user, the potential attacks that can be conducted are virtu-
ally limitless. Having a user unknowingly upload data to an
attacker-controlled location, for example, could compromise
privacy. Authentication could be bypassed but adding a rogue
user account or lowering predefined security settings. Com-
plete system compromise would also be an option should a
user’s mouse clicks download a malicious binary. In short, the
potential for damage in a successful clickjacking attack is lim-
ited only to the imagination of the attacker.

Clickjacking works because IFRAMEs and properties such as
z-index values and opacity are standards that are respected by
most common browsers. Individually, they are powerful tools,
which allow for the design of some truly impressive Web appli-
cations. However, when combined and used by a malicious at-
tacker, they can be made into a viable attack vector. Once again,
we are seeing attacks, which do not leverage individual vulner-
abilities. Instead, they abuse intended functionality by using it
in ways other than that which it was intended for.

Other Attacks
XSS and clickjacking are certainly not the only client-side at-
tacks that do not rely on client-side vulnerabilities. They are,
however, two of the better known examples of such attacks
which is why they have been highlighted. There are numer-
ous attacks which have similar characteristics. Attacks such
as cross-site request forgery, content spoofing, URL redirec-
tion, HTTP response splitting, etc., all have elements of naked
browser attacks. Moreover, many of these attacks represent
emerging issues, which are on the rise and just starting to be
seen in widespread attacks.

Challenges
You cannot stop what you do not know about. If an attack
blends in with legitimate Web traffic, it will always be harder
to detect. A browser exploit lends itself to signature-based de-
tection, as an attack generally requires that anomalous traffic
be sent. Take for example a buffer overflow in a Web browser.
In general, Web content will need to be created which includes
data to trigger the attack, shellcode to execute once control has
been gained, and some data for padding to ensure that every-
thing lands in the right place. None of this is standard content
on a Web page, so we can look for it. Clickjacking by contrast

Your Browser Wears No Clothes | Michael Sutton

would be harder to detect using signatures. None of the com-
ponents of clickjacking are nefarious individually. All are le-
gitimate properties available to Web application developers.
Therefore, they will commonly be seen on a variety of web-
pages. It is simply the combination of a variety of legitimate
attributes, which makes an attack possible. This fact alone
means that an elusive silver bullet to prevent such attacks is
not likely to be found.

Defense in depth
Defending against attacks, which succeed regardless of your
diligence patching and hardening browsers, is an unnerving
thought. We have been trained to tighten patch management
procedures as a first line of defense and here are increasing
volumes of attacks that bypass that entire process. Moreover,
naked browser attacks typically involve elements of social
engineering, and it is difficult, if not impossible, to prevent
an attack which involves an employee serving as an unknow-
ing accomplice.

Look at virtually any text discussing how to defend against
attacks such as XSS or CSRF and the content will discuss how
to secure the Web application, not how to protect the browser
affected by the attack. We have to date, focused the majority
of our security capital on defending servers, not browsers.
However, typical enterprises have hundreds of browsers for
every server, and the majority of browsers reside on laptops
that leave the confines of the enterprise on a regular basis.
Moreover, individuals that have limited security knowledge
at best operate those browsers. When looking at enterprise
security from that perspective, it is easy to see why we need
to shift our priorities.

Existing solutions
Browser patches are not available to protect against these at-
tacks because the browsers themselves are not vulnerable.
Rather, they are behaving as intended. That said, there are
certain client-side applications that can aid in protecting
against them. NoScript, for example, is an excellent exten-
sion for Firefox and other Mozilla-based browsers, which
permits granular control over the execution of active con-
tent such as JavaScript, Java, Flash, and other plugins. It
also includes specific controls to identify and block XSS and
clickjacking attacks. Administrators should, however, be
cautioned that NoScript is designed for a more sophisticated
user and many of the options may be confusing to an average
employee. While some administrators tout disabling script
engines altogether within browsers, this is no longer a viable
alternative, given the heavy reliance on JavaScript by modern
Web applications.

In the long run, it is hopeful that browser vendors will also
begin to expand security functionality to combat against at-
tacks despite the fact that the vulnerabilities leverage weak-
nesses in Web applications as opposed to the browsers them-
selves. Microsoft will be stepping up to the plate with the

ISSA Journal | February 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

26

Merge
Various commercial and free data feeds (e.g., Phishtank,
Google Safe Browsing, OpenDNS, etc.) exist, which identify
potentially malicious content. Such feeds can be incorporat-
ed into Web filtering solutions to block access to sites that
may be involved in browser-based attacks such as phishing
scams or botnet attacks. When leveraging such content it is
important to also regularly review metrics to ensure that the
lists are adding value and not creating unnecessary levels of
false positives.

Educate
User education should not be overlooked. While diligent us-
ers will never replace technical controls, ensure that users
have the knowledge to not just avoid attacks but also to esca-
late issues when needed. When establishing programs, ensure
that education is delivered on a continual basis and in a vari-
ety of formats. People learn in different ways, but repetition
is essential if the knowledge is to be retained.

Conclusion
Attackers once focused their efforts on targeting corporate
servers, looking for gaping holes that would give them the
keys to the kingdom. As enterprise servers became better
locked down, corporate desktops became a target, especially
Web browsers which have had a questionable security track
record at best. Today, many of the attacks targeting browsers
are naked attacks, requiring no browser vulnerabilities what-
soever. The interconnected reality of the Web ensures that
risk is not isolated between Web browser and server.

Some of the attacks discussed in this paper expose user data
due to vulnerabilities on the Web applications that they have
been exposed to. Other attacks simply abuse intended func-
tionality in an unintended way. Regardless, an increasing
number of attacks on Web browsers will succeed even when
the browser in question is fully patched and hardened. As a
result, enterprises must take a step back and revisit how they
view Web security. Patch management is no longer the silver
bullet that we had once hoped for.

About the Author
Michael Sutton has spent more than a de-
cade in the security industry conducting
leading-edge research, building teams of
world-class researchers and educating oth-
ers on a variety of security topics. As VP of
Security Research, Michael heads Zscaler
Labs, the research and development arm of
the company. Michael is a frequent speaker
at major information security conferences; he is regularly quot-
ed by the media on various information security topics, has au-
thored numerous articles, and is the co-author of Fuzzing: Brute
Force Vulnerabilities. He may be reached at michael.sutton@
zscaler.com.

release of Internet Explorer 8, which will include functional-
ity to detect reflected XSS attacks.6

Intrusion detection/prevention (IDS/IPS) systems often
have signatures to detect attacks such as XSS, but they tend
to identify exploitation of specific popular Web applications.
As mentioned, signature-based detection of the attacks dis-
cussed in this paper is not trivial as the actual attacks can
take many forms. Signatures that are too specific will miss
the attacks, and those that are too generic will result in high
false positive rates.

Defending against naked browser attacks
Not surprisingly, there is no silver bullet to protect against
naked browser attacks. Patches are not available to address
the weaknesses that permit such attacks and with plenty of
finger pointing going on to place blame elsewhere, quick fixes
will not be forthcoming. With that in mind, it is important
that enterprises implement a variety of detective and preven-
tive controls to combat naked browser attacks.

Monitor
Although detective in nature, properly monitoring and log-
ging activity on the network can ensure that naked browser
attacks can be isolated and followed up on when they do oc-
cur. Logs should be consolidated and not just maintained
separately at each individual Web gateway, so that incidents
can be correlated across physical locations. Analyze Web
logs for anomalous traffic patterns. This could include large
spikes in traffic to a particular page as attackers are for ex-
ample herding users to a particular location to be attacked.
Sudden drops in expected traffic volume could also raise sus-
picion as infected machines may be blocked from going to
particular sites. This often happens, for example, in order to
prevent the downloading of new anti-virus signatures, which
could identify an infected machine. Monitoring is not how-
ever sufficient on its own. Someone must own the process
to ensure that reports are produced, analyzed, and escalated
when necessary.

Manage
A common philosophy in security is that users should have
only the appropriate level of access necessary in order to do
their job. Why is it then that when it comes to Web access,
enterprises typically let users do anything, with the possible
exception of blocking objectionable content through URL
filtering? Web applications have been given that name for a
reason – they are applications and as such we can and should
restrict access based on functionality, not just destination.
For example, while it may be fine for users to view content on
Facebook, perhaps you want to restrict some or all users from
uploading content in order to protect against data leakage.
Look for solutions that allow you to control not just where
users are going, but also what they are doing.

6 http://msdn.microsoft.com/en-us/library/cc994��7(VS.8�).aspx.

Your Browser Wears No Clothes | Michael Sutton ISSA Journal | February 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

